selenium操作易盾验证码

易盾验证码模拟

import lombok.extern.slf4j.Slf4j;
import org.apache.commons.io.FileUtils;
import org.apache.commons.lang3.StringUtils;
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.openqa.selenium.By;
import org.openqa.selenium.JavascriptExecutor;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.chrome.ChromeOptions;
import org.openqa.selenium.interactions.Actions;
import org.openqa.selenium.support.ui.ExpectedCondition;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;

import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

@Slf4j
public class YidunRPA {


    public static void main(String[] args) {
        Long start = System.currentTimeMillis();
        for (int i=0;i<100;i++){
            login();
            log.info("第{}次登陆,耗时{}秒",(i+1),(System.currentTimeMillis()-start)/1000);
        }
    }


    public static void login(){
        System.setProperty("webdriver.chrome.driver","C:\\windows\\chromedriver.exe");
        //创建无Chrome无头参数
        ChromeOptions chromeOptions=new ChromeOptions();
        //chromeOptions.addArguments("-headless");
        WebDriver browser = new ChromeDriver(chromeOptions);
        browser.get("https://ssfw.gdcourts.gov.cn/web/loginA");
        WebElement loginWE = browser.findElement(By.id("login_user_name"));
        loginWE.sendKeys("151111111111");
        WebElement psdWE = browser.findElement(By.id("psw"));
        psdWE.sendKeys("1111111");
        JavascriptExecutor jse = (JavascriptExecutor)browser;
        jse.executeScript("document.getElementById(\"psw\").value=\"pwd\";");
        jse.executeScript("document.getElementById(\"login_pwdkey_txt\").value=\"pwd\";");

        for (int count=0;count<10;count++){
            log.info("验证码重试次数{}",(count+1));
            if (captcha(browser)){
                break;
            }
        }
        System.out.println("end");
    }


    public static boolean captcha(WebDriver browser){
        //需要UI界面,有头模式
        Actions action=new Actions(browser);
        action.moveToElement(browser.findElement(By.id("captcha")));
        try {
            Thread.sleep(500);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        //等待图片出现
        WebElement bgimgWE = (new WebDriverWait( browser, 3)).until(new ExpectedCondition<WebElement>(){
                                                             @Override
                                                             public WebElement apply(WebDriver d){
                                                                 return d.findElement(By.className("yidun_bg-img"));
                                                             }
                                                         }
        );
        String bgimgUrl = bgimgWE.getAttribute("src");
        WebElement jigsawWE = browser.findElement(By.className("yidun_jigsaw"));
        String jigsawUrl = jigsawWE.getAttribute("src");
        double distance = getDistance(bgimgUrl,jigsawUrl);
        try {
            move(browser,browser.findElement(By.className("yidun_slider")),Integer.parseInt(new java.text.DecimalFormat("0").format(distance)));
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        WebElement element =null;
        try {

            //等待元素出现
             element = (new WebDriverWait( browser, 5)).until(new ExpectedCondition<WebElement>(){
                                                                                @Override
                                                                                public WebElement apply(WebDriver d){
                                                                                    return d.findElement(By.xpath("//*[@id=\"page-wrapper\"]/div[2]/nav/div/a"));
                                                                                }
                                                                            }
            );
            log.info(element.getText());
            browser.quit();
            return true;
        } catch (Exception e) {
            log.info("获取元素失败");
            return false;
        }
    }
    /**
     * 获取网易验证滑动距离
     *
     * @return
     */
    public static String dllPath = "E:\\CODE\\rpa\\opencv\\opencv_java451.dll";

    public static double getDistance(String bUrl, String sUrl) {
        log.info(bUrl);
        log.info(sUrl);
        System.load(dllPath);
        File bFile = new File("E:/EasyDun_b.png");
        File sFile = new File("E:/EasyDun_s.png");
        try {
            FileUtils.copyURLToFile(new URL(bUrl), bFile);
            BufferedImage bgBI = ImageIO.read(bFile);

            FileUtils.copyURLToFile(new URL(sUrl), sFile);
            BufferedImage sBI = ImageIO.read(sFile);
            // 裁剪
            cropImage(bgBI, sBI, bFile, sFile);
            Mat s_mat = Imgcodecs.imread(sFile.getPath());
            Mat b_mat  = Imgcodecs.imread(bFile.getPath());

            //阴影部分为黑底时需要转灰度和二值化,为白底时不需要
            // 转灰度图像
            Mat s_newMat = new Mat();
            Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);
            // 二值化图像
            binaryzation(s_newMat);
            Imgcodecs.imwrite(sFile.getPath(), s_newMat);

            int result_rows = b_mat.rows() - s_mat.rows() + 1;
            int result_cols = b_mat.cols() - s_mat.cols() + 1;
            Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);
            Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF);
            // 归一化平方差匹配法TM_SQDIFF 相关系数匹配法TM_CCOEFF

            Core.normalize(g_result, g_result, 0, 1, Core.NORM_MINMAX, -1, new Mat());
            Point matchLocation = new Point();
            Core.MinMaxLocResult mmlr = Core.minMaxLoc(g_result);
            matchLocation = mmlr.maxLoc;
            // 此处使用maxLoc还是minLoc取决于使用的匹配算法
            Imgproc.rectangle(b_mat, matchLocation, new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar(0, 255, 0, 0));
            Imgcodecs.imwrite(bFile.getPath(), b_mat);
            return matchLocation.x + s_mat.cols() - sBI.getWidth() + 12;
        } catch (Throwable e) {
            e.printStackTrace();
            return 0;
        } finally {
//            bFile.delete();
//            sFile.delete();
        }
    }

    /**
     * 图片亮度调整
     *
     * @param image
     * @param param
     * @throws IOException
     */
    public static void bloding(BufferedImage image, int param) throws IOException {
        if (image == null) {
            return;
        } else {
            int rgb, R, G, B;
            for (int i = 0; i < image.getWidth(); i++) {
                for (int j = 0; j < image.getHeight(); j++) {
                    rgb = image.getRGB(i, j);
                    R = ((rgb >> 16) & 0xff) - param;
                    G = ((rgb >> 8) & 0xff) - param;
                    B = (rgb & 0xff) - param;
                    rgb = ((clamp(255) & 0xff) << 24) | ((clamp(R) & 0xff) << 16) | ((clamp(G) & 0xff) << 8) | ((clamp(B) & 0xff));
                    image.setRGB(i, j, rgb);

                }
            }
        }
    }

    // 判断a,r,g,b值,大于256返回256,小于0则返回0,0到256之间则直接返回原始值
    private static int clamp(int rgb) {
        if (rgb > 255){
            return 255;}
        if (rgb < 0){
            return 0;}
        return rgb;
    }

    /**
     * 生成半透明小图并裁剪
     *
     * @param image
     * @return
     */
    private static void cropImage(BufferedImage bigImage, BufferedImage smallImage, File bigFile, File smallFile) {
        int y = 0;
        int h_ = 0;
        try {
            // 2 生成半透明图片
            bloding(bigImage, 75);
            for (int w = 0; w < smallImage.getWidth(); w++) {
                for (int h = smallImage.getHeight() - 2; h >= 0; h--) {
                    int rgb = smallImage.getRGB(w, h);
                    int A = (rgb & 0xFF000000) >>> 24;
                    if (A >= 100) {
                        rgb = (127 << 24) | (rgb & 0x00ffffff);
                        smallImage.setRGB(w, h, rgb);
                    }
                }
            }
            for (int h = 1; h < smallImage.getHeight(); h++) {
                for (int w = 1; w < smallImage.getWidth(); w++) {
                    int rgb = smallImage.getRGB(w, h);
                    int A = (rgb & 0xFF000000) >>> 24;
                    if (A > 0) {
                        if (y == 0){
                            y = h;}
                        h_ = h - y;
                        break;
                    }
                }
            }
            smallImage = smallImage.getSubimage(0, y, smallImage.getWidth(), h_);
            bigImage = bigImage.getSubimage(0, y, bigImage.getWidth(), h_);
            ImageIO.write(bigImage, "png", bigFile);
            ImageIO.write(smallImage, "png", smallFile);
        } catch (Throwable e) {
            System.out.println(e.toString());
        }
    }

    /**
     *
     * @param mat
     *            二值化图像
     */
    public static void binaryzation(Mat mat) {
        int BLACK = 0;
        int WHITE = 255;
        int ucThre = 0, ucThre_new = 127;
        int nBack_count, nData_count;
        int nBack_sum, nData_sum;
        int nValue;
        int i, j;
        int width = mat.width(), height = mat.height();
        // 寻找最佳的阙值
        while (ucThre != ucThre_new) {
            nBack_sum = nData_sum = 0;
            nBack_count = nData_count = 0;

            for (j = 0; j < height; ++j) {
                for (i = 0; i < width; i++) {
                    nValue = (int) mat.get(j, i)[0];

                    if (nValue > ucThre_new) {
                        nBack_sum += nValue;
                        nBack_count++;
                    } else {
                        nData_sum += nValue;
                        nData_count++;
                    }
                }
            }
            nBack_sum = nBack_sum / nBack_count;
            nData_sum = nData_sum / nData_count;
            ucThre = ucThre_new;
            ucThre_new = (nBack_sum + nData_sum) / 2;
        }
        // 二值化处理
        int nBlack = 0;
        int nWhite = 0;
        for (j = 0; j < height; ++j) {
            for (i = 0; i < width; ++i) {
                nValue = (int) mat.get(j, i)[0];
                if (nValue > ucThre_new) {
                    mat.put(j, i, WHITE);
                    nWhite++;
                } else {
                    mat.put(j, i, BLACK);
                    nBlack++;
                }
            }
        }
        // 确保白底黑字
        if (nBlack > nWhite) {
            for (j = 0; j < height; ++j) {
                for (i = 0; i < width; ++i) {
                    nValue = (int) (mat.get(j, i)[0]);
                    if (nValue == 0) {
                        mat.put(j, i, WHITE);
                    } else {
                        mat.put(j, i, BLACK);
                    }
                }
            }
        }
    }
    // 延时加载
    private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception {
        WebElement webElement = null;
        boolean isWait = false;
        for (int k = 0; k < count; k++) {
            try {
                webElement = driver.findElement(by);
                if (isWait) {
                    System.out.println(" ok!");
                }
                return webElement;
            } catch (org.openqa.selenium.NoSuchElementException ex) {
                isWait = true;
                if (k == 0) {
                    System.out.print("waitWebElement(" + by.toString() + ")");
                }else {
                    System.out.print(".");
                }
                Thread.sleep(50);
            }
        }
        if (isWait) {
            System.out.println(" outTime!");
        }
        return null;
    }



    /**
     * 模拟人工移动
     * @param driver
     * @param element页面滑块
     * @param distance需要移动距离
     */
    public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException {
        int randomTime = 0;
        if (distance > 90) {
            randomTime = 250;
        } else if (distance > 80 && distance <= 90) {
            randomTime = 150;
        }
        List<Integer> track = getMoveTrack(distance - 2);
        int moveY = 1;
        try {
            Actions actions = new Actions(driver);
            actions.clickAndHold(element).perform();
            //Thread.sleep(200);
            for (int i = 0; i < track.size(); i++) {
                actions.moveByOffset(track.get(i), moveY).perform();
                Thread.sleep(new Random().nextInt(300) + randomTime);
            }
            Thread.sleep(200);
            actions.release(element).perform();
        } catch (Exception e) {
            e.printStackTrace();
        }
        System.out.println("1");
    }
    /**
     * 根据距离获取滑动轨迹
     * @param distance需要移动的距离
     * @return
     */
    public static List<Integer> getMoveTrack(int distance) {
        List<Integer> track = new ArrayList<>();// 移动轨迹
        Random random = new Random();
        int current = 0;// 已经移动的距离
        int mid = (int) distance * 4 / 5;// 减速阈值
        int a = 0;
        int move = 0;// 每次循环移动的距离
        while (true) {
            a = random.nextInt(10);
            if (current <= mid) {
                move += a;// 不断加速
            } else {
                move -= a;
            }
            if ((current + move) < distance) {
                track.add(move);
            } else {
                track.add(distance - current);
                break;
            }
            current += move;
        }
        return track;
    }

    /**
     * 计算滑动距离
     * @param bUrl
     * @param sUrl
     * @return
     */
    public static double getSlideDistance(String bUrl, String sUrl){
        try {
            File bFile = new File("E:/EasyDun1_b.png");
            File sFile = new File("E:/EasyDun1_s.png");
            // 加载OpenCV本地库
            //System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
            System.load(dllPath);

            FileUtils.copyURLToFile(new URL(bUrl), bFile);
            BufferedImage bgBI = ImageIO.read(bFile);

            FileUtils.copyURLToFile(new URL(sUrl), sFile);
            BufferedImage sBI = ImageIO.read(sFile);
            // 裁剪
//            cropImage(bgBI, sBI, bFile, sFile);
            //对滑块进行处理
            Mat slideBlockMat = Imgcodecs.imread(sFile.getPath());
            //1、灰度化图片
            Imgproc.cvtColor(slideBlockMat, slideBlockMat, Imgproc.COLOR_BGR2GRAY);
            //2、去除周围黑边
            for (int row = 0; row < slideBlockMat.height(); row++) {
                for (int col = 0; col < slideBlockMat.width(); col++) {
                    if (slideBlockMat.get(row, col)[0] == 0) {
                        slideBlockMat.put(row, col, 96);
                    }
                }
            }
            //3、inRange二值化转黑白图
            Core.inRange(slideBlockMat, Scalar.all(96), Scalar.all(96), slideBlockMat);

            Imgcodecs.imwrite(sFile.getPath(), slideBlockMat);
            //对滑动背景图进行处理
            Mat slideBgMat = Imgcodecs.imread(bFile.getPath());
            //1、灰度化图片
            Imgproc.cvtColor(slideBgMat, slideBgMat, Imgproc.COLOR_BGR2GRAY);
            //2、二值化
            Imgproc.threshold(slideBgMat, slideBgMat, 127, 255, Imgproc.THRESH_BINARY);
            Imgcodecs.imwrite(bFile.getPath(), slideBgMat);
            Mat g_result = new Mat();
            /*
             * matchTemplate:在模板和输入图像之间寻找匹配,获得匹配结果图像
             * result:保存匹配的结果矩阵
             * TM_CCOEFF_NORMED标准相关匹配算法
             */
            Imgproc.matchTemplate(slideBgMat, slideBlockMat, g_result, Imgproc.TM_CCOEFF_NORMED);
            /* minMaxLoc:在给定的结果矩阵中寻找最大和最小值,并给出它们的位置
             * maxLoc最大值
             */
            Point matchLocation = Core.minMaxLoc(g_result).maxLoc;
            //返回匹配点的横向距离
            return matchLocation.x;
        } catch (IOException e) {
            e.printStackTrace();
        }
        return 0;
    }

}

opencv动态链接库以及jar下载地址:

链接: https://pan.baidu.com/s/128Efmj_UqlbPUx7v_pW9DA 提取码: andx

注意:有一个问题还没有解决,还无法区分阴影部分是黑色还是白色。 因为两种的情况不同,所以处理方式也不同。阴影部分为黑底时需要转灰度和二值化,为白底时不需要。黑底使用归一化平方差匹配算法 TM_SQDIFF ,而白底使用相关系数匹配算法 TM_CCOEFF。

因以上关系,无法区分阴影部分是黑色还是白色,顾存在失败的几率,在程序中通过重试登录进行处理,经测试大概率在3次以内能够登录成功。

参考:https://blog.csdn.net/weixin_44549063/article/details/112193516